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Abstract

In this paper, the interactions between an elliptic hole and an arbitrary distributed small crack in plane piezoelectric
medium, which are often happened in engineering problems, are discussed. The Green�s functions in a piezoelectric
plate with an elliptic hole for a generalized line dislocation and a generalized line force are presented. The small crack
is represented by unknown continuous distributed dislocations. By considering traction free conditions on the surface of
the small crack, the problem is then reduced to a group of singular integral equations which are solved by using a special
numerical technique. Accuracy of the present method is confirmed by comparing the numerical results with those in
literatures for PZT-4 when the elliptic hole is degenerated into a crack. The generalized stress intensity factors of cracks
and the generalized stress on the edge of the elliptic hole are shown graphically. It is shown that the small crack may
have shielding or amplifying effects on the main elliptic hole or crack, which depends on the location and orientation of
the small crack. The hole near a crack can significantly reduce the stress intensity factor of the crack. The direction of
the electric field is important to shielding effect.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric ceramics are widely used as smart materials owing to their strong coupling between electric
and mechanical fields. Because piezoelectric ceramics are very brittle and susceptible to fracture, the linear
fracture behaviors of these materials under combined electro-mechanical loads have drawn increasing
attention in many researches (Sosa, 1991; Pak, 1992; Suo et al., 1992; Park and Sun, 1995; Sosa and
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Khutoryansky, 1996; Gao and Fan, 1999; Kuang and Ma, 2002). The analytical solutions of the problems
are often restricted to some special cases, such as an infinite body with single crack under uniform loading
at infinity. The problems in engineering always possess some defects and the closed solution cannot be ob-
tained easily. So the Green�s functions and numerical methods are necessary for these complex problems.
Lu and Williams (1998) and Gao and Fan (1998) obtained the Green�s functions in an infinite 2-D piezo-
electric material with an elliptic hole for a generalized line force. Huang and Kuang (2001) obtained Green�s
functions in an infinite piezoelectric medium containing an elliptic piezoelectric inhomogeneity for a gen-
eralized line dislocation and a generalized line force. Wu et al. (1978) reported that small cracks significantly
contribute to the overall failure mechanism in brittle materials. Han and Chen (1999) studied the multiple
parallel cracks interaction in a transversely isotropic piezoelectric material. Zeng and Rajapakse (2000)
investigated theoretically the interaction between a semi-infinite main crack and an arbitrary distributed
small crack in a piezoelectric plate. The pseudo-tractions method is usually used to solve these interaction
problems. Hwu et al. (1995) researched the interactions between inclusions and various distributions of
cracks for the anisotropic elastic materials. To our knowledge, the study on the interactions between an
elliptic hole and an arbitrarily distributed small crack in plane piezoelectric medium has not been reported
in literatures. In manufacturing and domain switching processes, voids and small cracks in piezoelectric
ceramics may be induced (Subbarao et al., 1993). Researching the interaction between an elliptic hole
and a small crack is important to the fracture of a structure.

In this paper, the Green�s functions for a generalized line dislocation and a generalized line force in plane
piezoelectric medium with an elliptic hole filled with or without air are presented and applied to study the
interactions between an elliptic hole and an arbitrary distributed small crack. It is assumed that the air filled
in the elliptic hole is a dielectric, but air cannot sustain mechanical load. This problem has simpler solution
as discussed here. The small crack is treated as continuous distributed generalized line dislocations. The
traction free and electrically impermeable conditions along the small crack surface will give a group of sin-
gular integral equations of the Cauchy type. The special numerical technique (Erdogan and Gupta, 1972;
Hills, 1995) is introduced to solve the singular integral equations with the single-valued conditions of the
displacements and electric potential. Then the generalized stress field on the edge of the elliptic hole and
the generalized stress intensity factors near the tips of cracks are obtained. Numerical results show that
the distributions of stress and electric displacement on the edge of the elliptic hole depend on the geometric
configuration, the loading, the location and orientation of the small crack. An elliptic hole near the crack
can strongly reduce the stress intensity factor of the crack and the direction of the electric field significantly
influences the shielding effect. In the case that the elliptic hole is degenerated into a crack, the small crack
has shielding or amplifying effect on the stress intensity factors of the main crack, which depends on the
location and direction of the small crack.
2. Basic equations and general solution

In a fixed rectangular coordinate system xi (i = 1,2,3), all of the field variables depend on x1, x2 only for
a generalized plane piezoelectric problem. Following Suo et al. (1992), Chung and Ting (1996) and Kuang
and Ma (2002), the general solution in this case can be given by the linear combination of four complex
analytical functions
u ¼ 2Re½AfðzÞ�; / ¼ 2Re½BfðzÞ�;

u ¼ ½u1; u2; u3;u�T; / ¼ ½/1;/2;/3;/4�
T
;

fðzÞ ¼ ½f1ðz1Þ; f2ðz2Þ; f3ðz3Þ; f4ðz4Þ�T; zk ¼ x1 þ pkx2; k ¼ 1; 2; 3; 4; ð1Þ
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where Re stands for the real part of a complex function; ui, u and /i are the displacement components,
electric potential and generalized stress functions, respectively; A and B are 4 · 4 complex matrices related
to the material constants, expressed as
A ¼ ½a1; a2; a3; a4�; B ¼ ½b1; b2; b3; b4�: ð2Þ

The eigenvalues pk and eigenvectors ak are determined by the following equations
½Qþ ðRþ RTÞp þ Tp2�a ¼ 0; ð3Þ

in which
Q ¼ QE e11

eT11 �j11

" #
; R ¼ RE e21

eT21 �j12

" #
; T ¼ TE e22

eT22 �j22

" #
;

QE
ik ¼ ci1k1; RE

ik ¼ ci1k2; T E
ik ¼ ci2k2; ðeijÞs ¼ eijs; ð4Þ
where cijkl is the elastic stiffness under constant electric field, eijs is the piezoelectric constant and jij is the
permittivity under constant strain field. bk can be obtained as
bk ¼ ðRT þ pkTÞak ¼ � 1

pk
ðQþ pkRÞak: ð5Þ
The generalized stress can be represented as
r1 ¼ ½r11;r12; r13;D1�T ¼ �½/1;2;/2;2;/3;2;/4;2�
T
;

r2 ¼ ½r21; r22; r23;D2�T ¼ ½/1;1;/2;1;/3;1;/4;1�
T
:

ð6Þ
After the normalization for the eigenvectors A and B, the following relation can be obtained
BT AT

B
T

A
T

" #
A A

B B

" #
¼

I 0

0 I

� �
;

A A

B B

" #
BT AT

B
T

A
T

" #
¼

I 0

0 I

� �
; ð7Þ
where the overbar denotes the conjugate of a complex function. The piezoelectric Barnett–Lothe tensors
can be written as
S ¼ ið2ABT � IÞ; H ¼ i2AAT; L ¼ �i2BBT; ð8Þ

where S, H and L are real, H and L are symmetric, SH and LS are antisymmetric.
3. Green�s function of an infinite piezoelectric plate with an elliptic hole

Consider an infinite plane piezoelectric medium containing an elliptic hole filled with air. The geometric
equation of an ellipse can be expressed as
x1 ¼ a cos h; x2 ¼ b sin h; qðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2h þ b2cos2h

p
;

n ¼ dx1
ds

;
dx2
ds

; 0

� �T

; m ¼ � dx2
ds

;
dx1
ds

; 0

� �T
; ds ¼ qðhÞdh;

ð9Þ
where 2a and 2b are the length of the major and minor axes of the ellipse, respectively, h is a real parameter,
n and m are the unit vectors tangential and normal to the elliptic boundary respectively, and s is an arc-
length on the ellipse, as shown in Fig. 1. It is noted here that m is pointed into the inner of the ellipse
as adopted by Chung and Ting (1996).
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Fig. 1. An elliptic hole and a small crack in an infinite piezoelectric medium.
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The mapping function
zkð1kÞ ¼ ck1k þ dk1
�1
k ; ck ¼ ða� ipkbÞ=2; dk ¼ ðaþ ipkbÞ=2 ð10Þ
will transform an ellipse in the zk-plane into a unit circle in the 1k-plane. The inverse mapping function is
1k ¼
zk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2k � 4ckdk

p
2ck

: ð11Þ
Along the unit circle boundary C, there is
1kjC ¼ r ¼ eih ¼ cos h þ i sin h: ð12Þ

Let the generalized line dislocation b* and the generalized line force f* be applied at a point z0(x10,x20)

outside the ellipse, where b* = {b,b4} = {b1,b2,b3,b4}, b represents Burgers vector and b4 is an electric di-
pole layer along the slip plane, and f* = {f, f4} = {f1, f2, f3, f4}, f represents a line distributed force vector and
f4 represents a line charge. Owing to the linear property, the principle of superposition can be used and this
problem can be divided into following two problems: (1) The generalized line dislocation b* and the gen-
eralized line force f* at the point z0(x10,x20) in a homogeneous infinite piezoelectric medium. (2) The
boundary of the elliptic hole are subjected to the loadings which makes the mechanical traction free and
normal electric displacement and electric potential continuous on it with the infinite outer medium.

3.1. Infinite homogeneous piezoelectric medium subjected to b* and f * at a point

For the case that the generalized line dislocation b* and the generalized line force f* are applied at a
point z0(x10,x20) in a homogeneous infinite piezoelectric medium (problem (1)), the generalized stress func-
tion and generalized displacement can be written as
uI ¼ 2Re½AfIðzÞ�; /I ¼ 2Re½BfIðzÞ�; ð13aÞ

or
uIj ¼ 2Re½ajkf I
k ðzkÞ�; /I

j ¼ 2Re½bjkf I
k ðzkÞ�; ð13bÞ

f I
k ðzkÞ ¼ qk lnðzk � zk0Þ; zk0 ¼ x10 þ pkx20: ð13cÞ
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The equilibrium conditions of the force and the single-valued conditions of the generalized displacement are
I
c

d/I ¼ f	;

I
c

duI ¼ b	; ð14aÞ
where c presents an arbitrary closed curve around the point z0. Combining Eq. (13) with Eq. (14a), it is
found
4pRe½iBq� ¼ f	; 4pRe½iAq� ¼ b	: ð14bÞ
With the aid of Eq. (7)1, the following relation can be obtained
q ¼ 1

2pi
ATf	 þ 1

2pi
BTb	: ð15Þ
According to the principle of superposition cited above, it is needed for problem (2) to obtain the surface
traction along the elliptic boundary. In doing so, the generalized stress function along the elliptic boundary
is firstly solved as follows.

By using Eqs. (12), (13) and (15) and the relation
ln½zkð1kÞ � zk0ð1k0Þ� ¼ lnð1k � 1k0Þ þ ln ck 1� dk=ck
1k1k0

� 	� �
; ð16Þ
the generalized stress function due to the presence of the generalized line dislocation and the generalized
force at z0 can be obtained as
/I ¼ 1

p
Im B lnð1k � 1k0Þ þ ln ck 1� dk=ck

1k1k0

� 	� �
 �
ðATf	 þ BTb	Þ

� 

: ð17Þ
Along the unit circle boundary, it follows
/I
C ¼ 1

p
Im B lnðr � 1k0Þ þ ln ck 1� dk=ck

r1k0

� 	� �
 �
ðATf	 þ BTb	Þ

� 

; ð18Þ
in which h•irepresents a diagonal matrix, Im stands for the imaginary part of a complex function, and
lnðr � 1k0Þ ¼ lnð�1k0Þ �
X1
n¼1

1

n
r
1k0

� 	n

¼ lnð�1k0Þ �
X1
n¼1

1

n
1

1k0

� 	n

½cosðnhÞ þ i sinðnhÞ�;

ln ck 1� dk=ck
r1k0

� 	� �
¼ ln ck �

X1
n¼1

1

n
dk=ck
r1k0

� 	n

¼ ln ck �
X1
n¼1

1

n
dk=ck
r1k0

� 	n

½cosðnhÞ � i sinðnhÞ�:
ð19Þ
Applying Eq. (6), the generalized surface traction vector tm at a point on the elliptic boundary in this case
can be obtained as
tm ¼ ð/I
CÞ;s

¼ 1

pqðhÞ Im B
X1
n¼1

1

1k0

� 	n

þ dk=ck
1k0

� 	n� �
sinðnhÞ

�*(

þi
dk=ck
1k0

� 	n

� 1

1k0

� 	n� �
cosðnhÞ

)+
ðATf	 þ BTb	Þ

)
: ð20Þ
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3.2. The general solution of an infinite piezoelectric medium with an elliptic hole

For problem (2), the generalized displacement and stress function vanishing at infinity in the piezoelec-
tric medium can be expressed as (Chung and Ting, 1996)
fIIðzÞ ¼ h1�n
k iðATgn þ BThnÞ;

uII ¼ 2
X1
n¼1

Re½Ah1�n
k iAT�gn þ 2

X1
n¼1

Re½Ah1�n
k iBT�hn;

/II ¼ 2
X1
n¼1

Re½Bh1�n
k iAT�gn þ 2

X1
n¼1

Re½Bh1�n
k iBT�hn;

ð21Þ
where gn,hn are real constant vectors, which will be determined later by the exact boundary conditions.
Substituting Eq. (12) into Eq. (21), the generalized displacement, generalized stress function and the gen-
eralized surface traction t̂m along the elliptic boundary can be expressed as
uIIC ¼
X1
n¼1

½cosðnhÞhn � sinðnhÞĥn�;

/II
C ¼

X1
n¼1

½cosðnhÞgn � sinðnhÞĝn�;

t̂m ¼ ð/II
C Þ;s ¼ � 1

qðhÞ
X1
n¼1

fn½sinðnhÞgn þ cosðnhÞĝn�g;

ð22Þ
in which
ĥn ¼ Shn þHgn; ĝn ¼ STgn � Lhn; n ¼ 1; 2; . . . ð23Þ
3.3. The electric field within the elliptic hole

On the other hand, the scalar electric potential u0 inside the hole without free charge can be expressed as
(Gao and Fan, 1998; Zhou et al., 2004; Kuang and Ma, 2002)
u0ðzÞ ¼ 2Ref 0ðzÞ; �ðE1 � iE2Þ ¼ �E ¼ 2df0ðzÞ
dz

; ð24Þ
in which E is the electric field f0(z) is an analytical function inside the hole. If in the local coordinate system
at a point on the elliptic boundary is selected such that n is coincided with x1 and m is coincided with x2,
then it is easy known that the normal electric displacement component on the boundary of the hole is
D	
m ¼ � 2e0 Im½df0ðzÞ�

ds
; ds ¼ qðhÞdh; ð25Þ
where e0 is the permittivity of air.
Because the air is isotropic, the mapping function
zð10Þ ¼ c010 þ d01
�1
0 ; c0 ¼ ðaþ bÞ=2; d0 ¼ ða� bÞ=2; ð26Þ
transforms the elliptic boundary into a unit circle boundary and transforms the real axis between

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
into the circle ðq0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ=ðaþ bÞ

p
< 1Þ, respectively. Namely, the inside of

an elliptic hole is transformed into the inside of an annular ring between j10j = 1 and q0 < 1. Therefore,
in the annular ring, f0(z) can be expressed by Laurent�s expansion as
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f0ð10Þ ¼
X1
n¼�1

a0n1
n
0; ð27Þ
where a0n is a complex constant. Because f0(z) is analytic inside the elliptic hole in the physical plane, the
following condition on the circle with radius q0 in the mapping plane must be satisfied (Sosa and Khutor-
yansky, 1996; Kuang and Ma, 2002)
f0ðq0e
ihÞ ¼ f0ðq0e

�ihÞ: ð28Þ

Following Eq. (28), f0(z) can be expressed as
f0ð10Þ ¼
X1
n¼1

a0nð1n0 þ ðd0=c0Þn1�n
0 Þ: ð29Þ
Substituting Eqs. (12) and (29) into Eq. (25), we have
D	
mC ¼ �2e0

q0

X1
n¼1

�n 1þ d0

c0

� 	n� 	
Ima0n

� �
sinðnhÞ þ n 1� d0

c0

� 	n� 	
Rea0n

� �
cosðnhÞ

� 

: ð30Þ
3.4. Green�s function of the problem

To ensure the traction-free and electric displacement continuous conditions on the interface (boundary)
of the elliptic hole and its outer infinite piezoelectric plate for the original problem, the generalized surface
traction t̂m must be applied to the elliptic boundary in problem (2), where
t̂m ¼ �tm þ D	
mCi4; i4 ¼ ½0; 0; 0; 1�T: ð31Þ
Substituting Eqs. (20), (22)3 and (30) into Eq. (31), the following relations can be obtained
gn ¼ gð1Þn þ gð2Þn ; ĝn ¼ ĝð1Þn þ ĝð2Þn ;

gð1Þn ¼ 1
np Im B 1

1k0

� �n
þ dk=ck

1k0

� �nD E
ðATf	 þ BTb	Þ

h i
;

ĝð1Þn ¼ 1
npRe B dk=ck

1k0

� �n
� 1

1k0

� �nD E
ðATf	 þ BTb	Þ

h i
;

8><
>:
gð2Þn ¼ �2e0ð1þ ðd0=c0ÞnÞ Im½a0n�i4;
ĝð2Þn ¼ 2e0ð1� ðd0=c0ÞnÞRe½a0n�i4;

(
ð32Þ
in which gn and ĝn are all divided into two parts: the first part associates to the traction-free condition, and
the second part associates to the electric displacement continuous condition.

Finally, by making the superposition of Eqs. (17) and (21)3, and combining with Eqs. (16) and (32), one
can obtain the generalized stress function inside piezoelectric medium as
/ ¼ /I þ /II ¼ /ð1Þ þ /ð2Þ;

/ð1Þ ¼ 2
X1
n¼1

Re½Bh1�n
k iðATgð1Þn þ BThð1Þn Þ� þ 1

p
ImfBhln½zkð1kÞ � zk0ð1k0Þ�iðATf	 þ BTb	Þg;

uð2Þ ¼ 2
X1
n¼1

Re½Bh1�n
k iðATgð2Þn þ BThð2Þn Þ�;

ð33Þ
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where /(1) and /(2) represent the function associated with D–P boundary condition (the generalized traction
free) and that with the exact electric condition (the electric displacement continuous) caused by the general-
ized line dislocation and the generalized line force, respectively. Substituting Eqs. (19), (23) and (32)4 into
Eq. (33)2 and using the relation
1�n
k 1�n

j0 =n ¼ � lnð1� 1�1
k 1�1

j0 Þ; if j 1�1
k 1�1

j0 j< 1 ð34Þ
one obtains
/ð1Þ ¼ 1

p
Im½Bhlnð1k � 1k0ÞiðATf	 þ BTb	Þ� þ 1

p

X4

j¼1

Im½Bhlnð1�1
k � 1j0ÞiB�1BIjðA

T
f	 þ B

T
b	Þ�: ð35aÞ
In which
I1 ¼ diag½1; 0; 0; 0�; I2 ¼ diag½0; 1; 0; 0�; I3 ¼ diag½0; 0; 1; 0�; I4 ¼ diag½0; 0; 0; 1�; ð35bÞ

From Eqs. (24) and (29), the electric potential u0 on the hole surface can be expressed as
u0C ¼ 2Re½f0ðrÞ� ¼ 2Re
X1
n¼1

a0n½ð1þ ðd0=c0ÞnÞ cosðnhÞ þ ið1� ðd0=c0ÞnÞ sinðnhÞ�: ð36Þ
Comparing Eq. (22)1 with Eq. (36) and the single-valued condition, one obtains
ðhnÞ4 ¼ 2ð1þ ðd0=c0ÞnÞRe½a0n�;
ðĥnÞ4 ¼ 2ð1� ðd0=c0ÞnÞ Im½a0n�; n P 1:

ð37Þ
Substituting Eqs. (32) and (37) into Eq. (23), the following relations can be obtained
2½ð1þ ðd0=c0ÞnÞ þ e0ð1� ðd0=c0ÞnÞL�1
44 �Re½a0n� þ 2e0ð1þ ðd0=c0ÞnÞL�1

4i S
T
i4 Im½a0n� ¼ C1n;

�2e0ð1� ðd0=c0ÞnÞL�1
4i S

T
i4 Re½a0n� þ 2½e0ð1þ ðd0=c0ÞnÞL�1

44 þ ð1� ðd0=c0ÞnÞ� Im½a0n� ¼ C2n;

(
ð38Þ
in which
C1n ¼
L�1
4j

np ST
ji Im B 1þðdk=ckÞn

1n
k0

D E
AT

h i
�Re B ðdk=ckÞn�1

1n
k0

D E
AT

h in o
f	

þ L�1
4j

np ST
ji Im B 1þðdk=ckÞn

1n
k0

D E
BT

h i
�Re B ðdk=ckÞn�1

1n
k0

D E
BT

h in o
b	;

C2n ¼
L�1
4j

np Im B 1þðdk=ckÞn
1n
k0

D E
AT

h i
þ ST

jiRe B ðdk=ckÞn�1
1n
k0

D E
AT

h in o
f	

þ L�1
4j

np Im B 1þðdk=ckÞn
1n
k0

D E
BT

h i
þ ST

jiRe B ðdk=ckÞn�1
1n
k0

D E
BT

h in o
b	;

8>>>>>>>>><
>>>>>>>>>:

ð39Þ
where C1n, C2n are reals. Solving Eq. (39), one gets
a0n ¼ an=bn;

an ¼
1

2
½Cnðd0=c0Þnð1� e0L�1

44 þ ie0L�1
4j S

T
j4Þ � Cnð1þ e0L�1

44 þ ie0L�1
4j S

T
j4Þ�;

bn ¼ fð1� ðd0=c0Þ2nÞ½1� ðe0L�1
44 Þ

2 � ðe0L�1
4j S

T
j4Þ

2� � 2e0ð1þ ðd0=c0Þ2nÞL�1
44 g;

Cn ¼ C1n þ iC2n:

ð40Þ
Employing Eq. (32) and Eq. (33)3, the generalized stress function /(2) can be expressed as
/ð2Þ ¼ 2e0
X1
n¼1

Im½Bh1�n
k iB�1ð�a0ni4 � ðd0=c0Þna0ni4Þ�; ð41Þ
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where a0n is obtained from Eq. (40) and the following relations have been used
AT þ BTL�1ST ¼ B�1=2; BTL�1 ¼ iB�1=2: ð42Þ
Because the air is a special dielectric without mechanical strength, the above solution is much easier than
that with a general piezoelectric inclusion. It is also noted that if the elliptic hole is not a slender one, the
insulated condition on its boundary is approximately held, that is, e0 = 0 inside the elliptic hole. In this case,
/(2) vanishes and the present solutions coincide with those by Lu and Williams (1998).
4. Piezoelectric plate with a main crack and a generalized line dislocation

In this section, let the elliptic hole degenerate into a crack along the x1 axis, and a generalized line dis-
location b* at point z0(x10,x20) is applied only. Then ck = dk = a/2 and c0 = d0 = a/2. The additional gen-

eralized stress function /(2) can be represented as
/ð2Þ ¼ �4e0
X1
n¼1

Im½Bh1�n
k iB�1ði Ima0ni4Þ�: ð43Þ
Eq. (40) is simplified to
ImCn ¼ �C2n ¼ �2
L�1
4j

np
Im B

1

1nk0


 �
BTb	

� �
;

bn ¼ �4e0L�1
44 ; Ima0n ¼ C2n=4e0L�1

44 :

ð44Þ
Substituting Eq. (44) into Eq. (43), the generalized stress function /(2) is reduced to
/ð2Þ ¼ � 1

L�1
44

X1
n¼1

Re½Bh1�n
k iB�1i4C2n� ¼ �2

X1
n¼1

Re B
C2n

2L�1
44

1�n
k


 �
B�1i4

� �
; ð45Þ
in which, we have
�
X1
n¼1

C2n

2L�1
44

1�n
k ¼ �

X1
n¼1

1�n
k L�1

4j

npL�1
44

Im B
1

1nl0


 �
BT

� �
b	

¼ �
X1
n¼1

L�1
4j

nL�1
44

B
1

1nk1
n
l0


 �
qþ B

1

1nk1
n
l0


 �
q

� 	

¼
L�1
4j

L�1
44

½Bjlhlnð1� 1�1
k 1�1

0 Þiql þ Bjlhlnð1� 1�1
k 1�1

l0 Þi�ql�:

ð46Þ
Eqs. (45) and (46) show that the generalized stress function /(2) is independent of e0. It may be seen that
Eq. (46) has the same form as that (Eq. (48) in the reference) given in Gao and Fan (1998).

The generalized stress intensity factors dK(a) = {dKII,dKI,dKIII,dKD} at the center crack tip x1 = a is
defined as
dKðaÞ ¼
ffiffiffiffiffiffi
2p

p
lim
zk!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzk � a

p
Þ/;1jx2¼0: ð47Þ
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Substituting Eqs. (33), (35) and (43) into Eq. (47), it is found
dKðaÞ ¼
ffiffiffi
p
a

r
lim
1k!1

@/
@1k

¼
ffiffiffiffiffiffi
1

pa

r
Im B

1

1� 1k0


 �
BT

� �
�

X4

j¼1

Im B
1

1� 1j0


 �
B�1BIjB

T
� �( )

b	

� 2ffiffiffiffiffiffi
pa

p
L�1
4j

L�1
44

Im B
1

1� 1k0


 �
BTb	i4

� �

¼
ffiffiffiffiffiffi
1

pa

r
Im B 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zk0 þ a
zk0 � a

r
 �
BTb	

� �
�
L�1
4j

L�1
44

Im B 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zk0 þ a
zk0 � a

r
 �
BTb	i4

� �( )
:

ð48Þ
From Eq. (48), we can obtain
dKDðaÞ ¼ �
L�1
4j

L�1
44

dKjðaÞ; j ¼ 1; 2; 3: ð49Þ
Eq. (49) means that the electric displacement intensity factor caused by generalized line dislocation b* in a
piezoelectric medium is dependent on the mechanical stress intensity factors and material properties.

Similarly, the generalized stress intensity factors at the center crack tip x1 = �a are
dKð�aÞ ¼ �
ffiffiffiffiffiffi
1

pa

r
Im B 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zk0 � a
zk0 þ a

r
 �
BTb	

� �
�
L�1
4j

L�1
44

Im B 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zk0 � a
zk0 þ a

r
 �
BTb	i4

� �( )
;

dKDð�aÞ ¼ �
L�1
4j

L�1
44

dKjð�aÞ; j ¼ 1; 2; 3: ð50Þ
5. Continuous distribution dislocation method

Here, a small crack is represented by continuous distributed generalized line dislocations. Using the
Green�s functions obtained in Sections 3 and 4, a group of singular integral equations of the Cauchy type
are obtained, which can be solved by a special numerical technique (Erdogan and Gupta, 1972; Hills, 1995).

Let a small crack located near the end of an elliptic hole in plane piezoelectric medium be subjected to
uniform electro-mechanical loads at infinity, see Fig. 1. Owing to the linear property, the principle of super-
position can be used and the problem can be divided into two ones: (a) The plane piezoelectric medium with
an elliptic hole only is subjected to uniform electro-mechanical loads at infinity. (b) Same as the original
problem but without electro-mechanical loads at infinity and the small crack is instead by continuous dis-
tribution of dislocations. The dislocations will produce tractions on the small crack surface to counteract
those produced in problem(a).

For problem (a), the generalized stress function is (Gao and Fan, 1999; Kuang and Ma, 2002)
/ðaÞ ¼ r1
2 x1 � r1

1 x2 �RefB 1�1
k

 !
B�1½aðr1

2 � D	
2i4Þ � ibðr1

1 � D	
1i4Þ�g; ð51Þ
where the uniform loads at infinity can be represented as
r1
1 ¼ ½r0

11; r
0
12; r

0
13;D

0
1�
T
; r1

2 ¼ ½r0
21; r

0
22; r

0
23;D

0
2�
T
; ð52Þ
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and D	
1;D

	
2 are the electric displacement inside the elliptic hole and are given by
ðbL�1
44 � a=e0ÞD	

1 � aL�1
4i S

T
i4D

	
2 ¼ bL�1

4i r1
1i � aL�1

4i S
T
ijr

1
2i ;

bL�1
4i S

T
i4D

	
1 þ ðaL�1

44 � b=e0ÞD	
2 ¼ bL�1

4i S
T
ijr

1
1i þ aL�1

4i r1
2i :

(
ð53Þ
If the elliptic hole is degenerated into a center crack along the x1 axis, let b = 0, then Eqs. (51) and (53)
are reduced to
/ðaÞ ¼ r1
2 x1 � r1

1 x2 �Re½Bh1�1
k iB�1aðr1

2 � D	
2i4Þ�;

D	
2 ¼ L�1

4i r1
2i =L

�1
44

ð54Þ
it can be seen that electric displacement D	
2 only depends on external loads and piezoelectric material

properties.
For problem (b), by integrating the generalized stress function, given by Eqs. (35) and (41), along the

small crack surface, one obtains
/ðbÞðgÞ ¼ 1

p

Z c

�c
Im½Bhlnð1k � 1k0ÞiBT� þ

X4

j¼1

Im½Bhlnð1�1
k � 1j0ÞiB�1BIjB

T�
( )

b	ðnÞdn

þ 2e0

Z c

�c

X1
n¼1

Im½Bh1�n
k iB�1f�a0n � ðd0=c0Þna0ng�i4 dn; ð55Þ
where 2c is the length of the small crack and zk; zk0 can be expressed as
zk ¼ ðx01 þ pkx
0
2Þ þ gðcos a þ pk sin aÞ;

zk0 ¼ ðx01 þ pkx
0
2Þ þ nðcos a þ pk sin aÞ;

ð56Þ
where a is the angle between the small crack and the axis ox1, g and n denote the distances from the small
crack center (x01; x

0
2 or d, w) to zk, zk0, respectively.

Using the superposition principle, the generalized stress function / can be expressed as
/ ¼ /ðaÞ þ /ðbÞ: ð57Þ

Because the traction is free on the small crack surface, we have
@/
@s

¼ @/ðaÞ

@s
þ @/ðbÞ

@s
¼ 0; j s j< c: ð58Þ
Substituting Eqs. (51) and (55) into Eq. (58), one obtains
� 1

p

Z c

�c
Im BBTb	ðnÞ 1

n � g

� �
dn þ

Z c

�c
K1ðn; gÞb	ðnÞdn þ

Z c

�c
K2ðn; gÞdn ¼ �Ta

mðgÞ;

Ta
m ¼ r1

2 cos h � r1
1 sin h þRe B

@1k=@s
12k


 �
B�1½aðr1

2 � D	
2i4Þ � ibðr1

1 � D	
1i4Þ�

� 

;

ð59Þ
where Ta
m denotes the generalized traction along the small crack induced by problem (a) and the kernel

functions of the singular integral equation, K1 and K2, are
K1ðn; gÞ ¼ � 1

p
Im B

@1k=@s
1kð1k1k0 � 1Þ


 �
BT

� �
� 1

p

X4

l¼1

Im B
@1k=@s

1kð1� 1k�1l0Þ


 �
B�1BIlB

T
� �

;

K2ðn; gÞ ¼ �2e0
X1
n¼1

Im B
n@1k=@s

1nþ1
k


 �
B�1f�a0n � ðd0=c0Þna0ng

� �
i4:

ð60Þ
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It should be noted that in the derivation of Eq. (59), the following relations have been used
@

@s
f ðzkÞ ¼

@f
@x1

@x1
@s

þ @f
@x2

@x2
@s

¼ cos h
@f
@zk

þ pk sin h
@f
@zk

¼ ðcos h þ pk sin hÞ @f ðzkÞ
@zk

;

@1k=@s ¼
212kðcos h þ pk sin hÞ

að12k � 1Þ :

ð61Þ
When the elliptic hole is degenerated into a crack, the Kernel function K2 can be written as
K2ðn; gÞ ¼
1

p
Im B

L�1
4j

L�1
44

Bjl
@1k=@s

1kð1k110 � 1Þ


 �
BT
lm � Bjl

@1k=@s
1kð1k�1l0 � 1Þ


 �
B
T

lm

� �
b	m

* +
B�1

( )
i4: ð62Þ
Let l 0 = n/c, l = g/c, then Eq. (59) can be rewritten as
� 1

p

Z 1

�1

Im½BBT�b	ðl0Þ 1

l0 � l
dl0 þ

Z 1

�1

K1ðl0; lÞb	ðl0Þdl0 þ
Z 1

�1

K2ðl0; lÞdl0 ¼ �Ta
mðlÞ; j l j< 1: ð63Þ
The single-valued conditions of the generalized displacement around a closed contour surrounding the
whole small crack are
Z 1

�1

b	ðl0Þdl0 ¼ 0: ð64Þ
Following Erdogan and Gupta (1972), since b* have an integrable singularity, we can define a regular un-
known function b

_
as
b	ðl0Þ ¼ b
_
ðl0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l02
p ; ð65Þ
where b
_
is Holder-continuous along [�1,1].

Now, the whole problem is reduced to a group of singular integral equations including Eqs. (63)–(65). By
applying the numerical method introduced by Erdogan and Gupta (1972) and Hills (1995), the unknown
function b

_
can be solved and then the dislocation density b* can be determined simply. Here, we select

the collocation points l0i; lr in the interval [�1,1] as
l0i ¼ cos
ð2i� 1Þp

2n
; lr ¼ cos

pr
n
; i ¼ 1; 2; . . . ; n and r ¼ 1; 2; . . . ; n� 1; ð66Þ
then the singular integral equations are reduced to a set of algebraic equations as follows
Xn

i¼1

1

n
b
_
ðl0iÞ

Im½BBT�
l0i � lr

� pK1ðl0i; lrÞ � pK
_

2ðl0i; lrÞ
� 


¼ Ta
mðlrÞ;

Xn

i¼1

b
_
ðl0iÞ ¼ 0;

ð67aÞ
in which
K̂2ðn; gÞ ¼
1

p
Im B

L�1
4j

L�1
44

Bjl
@1k=@s

1kð1k1l0 � 1Þ


 �
BT
lm � Bjl

@1k=@s
1kð1k1l0 � 1Þ


 �
B
T

lm

� �* +
B�1

( )
i4; ð67bÞ
where b
_
is a four rank vector. The first and second equations of Eq. (67a) will provide 4(n � 1) and 4 alge-

braic equations respectively, so Eq. (67a) has totally 4n equations with 4n unknown variables. The 4n · 4n
algebraic coefficient matrix on the left hand side of Eq. (67a) can be inversed.
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When the function b
_
is obtained at the collocation points, its value at the two crack tip can be given by

(Hills, 1995)
b
_
ð1Þ ¼ MEð1Þ

Xn

i¼1

bEð1Þ b
_
ðl0iÞ; b

_
ð�1Þ ¼ MEð�1Þ

Xn

i¼1

bEð�1Þ b
_
ðl0nþ1�iÞ;

MEð1Þ ¼ MEð�1Þ ¼ 1=n; bEð1Þ ¼ bEð�1Þ ¼ sin½ð2i� 1Þð2n� 1Þp=4n�
sin½ð2i� 1Þp=4n� :

ð68Þ
The generalized stress vector near the small crack tips can be expressed as
TmðlÞ ¼ iBBT b
_
ðlÞffiffiffiffiffiffiffiffiffiffiffiffi

l2 � 1
p sgnðlÞ þ Tr

mðlÞ; j l j> 1; ð69Þ
where Tr
mðlÞ is finite near the crack-tips, and sign(l)=l/jlj. When l approaches to 1 (or �1), the values of b

_
at

the tips can be obtained as
b
_
ð�1Þ ¼ lim

lþ!�1
b
_
ðlÞ ¼ � lim

l�!�1
b
_
ðlÞ; ð70Þ
where l� means l approaches to ±1 from the outside of the interval [�1,1] and l+ means l approaches to ±1
from the inside of the interval [�1,1]. Using Eqs. (69) and (70), we can calculate the generalized stress inten-
sity factors at the tips of small crack as follows
Km
I

Km
II

Km
III

Km
D

8>>><
>>>:

9>>>=
>>>;

¼ lim
x!�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð�x� cÞ

p
FTmðxÞ ¼ lim

l�!�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð�l� 1Þc

p
FTmðlÞ ¼ �i

ffiffiffiffiffi
pc

p
FBBT b

_
ð�1Þsgnð�1Þ;

ð71Þ

F is the transformation matrix given as
F ¼

� sin h cos h 0 0

cos h sin h 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775: ð72Þ
If the elliptic hole is degenerated into a main crack, the generalized stress intensity factors near the tips of
the main crack can be written as two parts, that is
KII

KI

KIII

KD

8>>><
>>>:

9>>>=
>>>;

¼ K0 þ K; ð73Þ
where the first part is associated with the uniform loading at infinity, it is
K0 ¼
ffiffiffiffiffiffi
pa

p
ðr1

2 � D	
2i4Þ; ð74Þ
and the second part, called as the additive generalized stress intensity factors, is produced due to the small
crack. Integrating Eq. (48) along the small crack surface, we have
K ¼
Z c

�c
dK ¼

Z 1

�1

PðtÞb	ðl0Þdl0 ¼ p
n

Xn

i¼1

Pðl0iÞ b
_
ðl0iÞ; ð75Þ
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where P is a bounded complicate function in the interval [�1,1] and is not given here in order to keep this
work in a reasonable size.
6. Numerical results and discussions

The numerical examples are carried out for PZT-4 material with the poling direction along the ox2 axis.
The material properties are
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of sma
c11 ¼ 13:9� 1010 ðN=m2Þ; c13 ¼ 7:78� 1010 ðN=m2Þ; c12 ¼ 7:43� 1010 ðN=m2Þ;
c22 ¼ 11:3� 1010 ðN=m2Þ; c44 ¼ 2:56� 1010 ðN=m2Þ;
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Let the center of a small crack be z0ðx01; x02Þ or (d,w) and it inclines an angle a with respect to the axis ox1,
as shown in Fig. 1.

To check the validity of the present method, infinite elastic plate with two same parallel cracks along ox1
(d/a = 1.5,a = c,a = w = 0) subjected to Mode I mechanical load r0

2 at infinity are considered. The results
show that the stress intensity factors at the tips of two cracks are KIðaÞ ¼ 1:22894

ffiffiffiffiffiffi
pa

p
r0
2, KIð�aÞ ¼

1:08107
ffiffiffiffiffiffi
pa

p
r0
2 and KI(a + d + c) = 1.08108

ffiffiffiffiffiffi
pa

p
r0
2, KIðaþ d � cÞ ¼ 1:22889

ffiffiffiffiffiffi
pa

p
r0
2, which are consistent

to the results of Han and Chen (1999).

6.1. Interaction between the main crack and a small crack

The second example is to consider the interaction between a small crack and a center main crack with
D–P boundary condition and under Mode I electro-mechanical loads at infinity. Both the small crack and
the main crack are parallel, that is a = 0. For comparing, four kinds of loads (K0

D=K
0
I ¼ 0; 5� 10�9;

10�8;�10�8) and d/c = a/c = 2 are considered.
Fig. 2 shows the variation of the normalized stress intensity factors KI=K0

I and Km
I =K

0
I ðK0

I ¼
ffiffiffiffiffiffi
pa

p
r0
2Þ

with the angle w, respectively. At the right tip of the main crack, the stress intensity factor will be amplified
or shielded dependent on the value of w. The transition angle from amplifying to shielding depends on the
electric load. It is found that in the range of 0–90�, the electric load has no influence on the stress intensity
factor at three values w. At the left tip of the main crack, the stress intensity factor will always be amplified
in the range 0–90� and it is also found that there are two values of w at which the electric load has no influ-
ence on the stress intensity factor. From Fig. 2, it can also be seen that the normalized stress intensity fac-
tors at four tips of small crack and main crack depend on the electric load and the angle w. Especially, in
some region, negative electric field has a negative influence on the stress intensity factors. The results ob-
tained here are somewhat similar to the results of Fig. 3 in Zeng and Rajapakse�s work (2000) for a semi-
infinite crack.

Fig. 3 shows the variation of normalized stress intensity factor of main crack with a radial small crack(d/
c = 1.2, a = 2c and a = w) where the exact electric boundary condition on the boundary of the ellipse is
satisfied. As seen from this figure, there are three special w values, at which electric field has no influence
on the stress intensity factor, including 0� (a parallel small crack) or 90� (a perpendicular small crack) and
the third value of w (about 38� or 48�) depends on the material properties and the location of the crack. In
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Fig. 3. The distribution of the normalized stress intensity factor near the main crack-tips with w for the radial small crack (w = a,
d/c = 1.2). (a) At the right main crack-tip. (b) At the left main crack-tip.
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the region of w P 0�, a 6 90�, the stress intensity factors at the main crack-tips are always amplified. The
negative and positive electric fields will have a contrary effect on the stress intensity factors of the main
crack.

6.2. Interactions between the elliptic hole and a small crack

Consider a small crack located near the elliptic hole in a piezoelectric plate subjected to uniform electro-
mechanical loads r0

2 and D0
2 at infinity. If the ratio b/a is not very small, the D–P boundary condition is

reasonable.
Fig. 4 depicts the distribution of the normalized stress intensity factors Km

I =K
m0
I ðKm0

I ¼ ffiffiffiffiffi
pc

p
r0
2Þ at the

end of the small crack with the various angles w in a piezoelectric plate subjected to various electro-mechan-
ical loads. As shown in the figure, Km

I of the small crack depends on the ratio b/a, the angle w and the elec-
tro-mechanical loads. But in all cases, Km

I =K
m0
I < 1, which means that an elliptic hole near by the crack can

reduce the stress intensity factor of a crack and the shielding effect is happened. It can also be seen that the
shielding effect for D2 ¼ �1:0� 10�8r0

2 is larger than that for D2 ¼ þ1:0� 10�8r0
2. This means that the

direction of the electric field strongly influences the shielding effect. The larger b/a the smaller shielding ef-
fect on the stress intensity factors of small crack is, but the effect of b/a on Km

I is very small, when b/a < 0.01
and d = a = 2c.

Fig. 5 depicts the variation of the normalized stress r2=r0
2 at the point (a, 0) on the elliptic boundary with

the angle w. The normalized stress at the right point (a, 0) may be either increased or decreased due to the
presence of the small crack. The transition angle is dependent on the electric load and the ratio a/b. Similar
to Figs. 2(a) and (b), the electric load has no influence on the stress at three special values of w, but in pres-
ent case the special w does not take zero value. As shown in Fig. 5, the positive and negative electric loads
have the contrary influence on the stress at the point (a, 0).

Fig. 6 shows the distribution of normalized hoop stress rh=r0
2 and electric displacement Dh=r0

2 on the
edge of a circle hole (a = b = 1) for various radial small crack( w = a, b/c = a/c = 2). As shown in Figs.
6(d)–(f), the maximum values of the hoop stress do not always occur at h = 0 (the polar angle with origin
at circle center) and depend on the orientation of radial small crack and electric load. For example, when
the mechanical load r0

2 is applied only, the maximum values of rh occur at h = 15�, h = 0�, h = 23� asso-
ciated with w = 0�, w = 45�, w = 90�, respectively. Similarly, the maximum value of the hoop electric
displacement depends on the orientation of radial small crack and electro-mechanical loads.
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7. Conclusions

This paper gives the Green�s function for an infinite piezoelectric medium with an elliptic hole filled with
air or without air under the generalized line dislocation and the generalized line force. Based on the Green�s
functions, the interaction of an arbitrary distributed small crack and an elliptic hole in plane piezoelectric
medium subjected to uniform electro-mechanical loads at infinity are discussed. Through solving the singu-
lar integral equations, the generalized stress intensity factors of main and small cracks with D–P boundary
condition or exact electric boundary condition in main crack and the generalized stress on the edge of an
elliptic hole are obtained under combined electro-mechanical loads. Numerical illustrations and discussions
for the interaction are given. An elliptic hole near by a crack always reduces the stress intensity factors of
the crack and the direction of the electric field is important in discussing the shielding effect. The amplifying
and shielding to the generalized stress intensity factors of a main crack due to the presence of a small crack
are dependent on the location and orientation of a small crack, which is similar with the results in litera-
tures. There are some special locations, at which the electric field has no influence on the stress intensity
factor, including 0� (a parallel small crack) and 90� (a perpendicular small crack). The stress and the electric
displacement on the edge of an elliptic hole are not always largest at the point (a, 0) when a small crack
exists.
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