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Abstract

In this paper, the interactions between an elliptic hole and an arbitrary distributed small crack in plane piezoelectric
medium, which are often happened in engineering problems, are discussed. The Green’s functions in a piezoelectric
plate with an elliptic hole for a generalized line dislocation and a generalized line force are presented. The small crack
is represented by unknown continuous distributed dislocations. By considering traction free conditions on the surface of
the small crack, the problem is then reduced to a group of singular integral equations which are solved by using a special
numerical technique. Accuracy of the present method is confirmed by comparing the numerical results with those in
literatures for PZT-4 when the elliptic hole is degenerated into a crack. The generalized stress intensity factors of cracks
and the generalized stress on the edge of the elliptic hole are shown graphically. It is shown that the small crack may
have shielding or amplifying effects on the main elliptic hole or crack, which depends on the location and orientation of
the small crack. The hole near a crack can significantly reduce the stress intensity factor of the crack. The direction of
the electric field is important to shielding effect.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric ceramics are widely used as smart materials owing to their strong coupling between electric
and mechanical fields. Because piezoelectric ceramics are very brittle and susceptible to fracture, the linear
fracture behaviors of these materials under combined electro-mechanical loads have drawn increasing
attention in many researches (Sosa, 1991; Pak, 1992; Suo et al., 1992; Park and Sun, 1995; Sosa and

* Corresponding author. Tel.: +86 2154743067; fax: +86 2154743044.
E-mail address: zbkuang@mail.sjtu.edu.cn (Z.-B. Kuang).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.09.038


mailto:zbkuang@mail.sjtu.edu.cn 

2804 Z.-D. Zhou et al. | International Journal of Solids and Structures 42 (2005) 2803-2822

Khutoryansky, 1996; Gao and Fan, 1999; Kuang and Ma, 2002). The analytical solutions of the problems
are often restricted to some special cases, such as an infinite body with single crack under uniform loading
at infinity. The problems in engineering always possess some defects and the closed solution cannot be ob-
tained easily. So the Green’s functions and numerical methods are necessary for these complex problems.
Lu and Williams (1998) and Gao and Fan (1998) obtained the Green’s functions in an infinite 2-D piezo-
electric material with an elliptic hole for a generalized line force. Huang and Kuang (2001) obtained Green’s
functions in an infinite piezoelectric medium containing an elliptic piezoelectric inhomogeneity for a gen-
eralized line dislocation and a generalized line force. Wu et al. (1978) reported that small cracks significantly
contribute to the overall failure mechanism in brittle materials. Han and Chen (1999) studied the multiple
parallel cracks interaction in a transversely isotropic piezoelectric material. Zeng and Rajapakse (2000)
investigated theoretically the interaction between a semi-infinite main crack and an arbitrary distributed
small crack in a piezoelectric plate. The pseudo-tractions method is usually used to solve these interaction
problems. Hwu et al. (1995) researched the interactions between inclusions and various distributions of
cracks for the anisotropic elastic materials. To our knowledge, the study on the interactions between an
elliptic hole and an arbitrarily distributed small crack in plane piezoelectric medium has not been reported
in literatures. In manufacturing and domain switching processes, voids and small cracks in piezoelectric
ceramics may be induced (Subbarao et al., 1993). Researching the interaction between an elliptic hole
and a small crack is important to the fracture of a structure.

In this paper, the Green’s functions for a generalized line dislocation and a generalized line force in plane
piezoelectric medium with an elliptic hole filled with or without air are presented and applied to study the
interactions between an elliptic hole and an arbitrary distributed small crack. It is assumed that the air filled
in the elliptic hole is a dielectric, but air cannot sustain mechanical load. This problem has simpler solution
as discussed here. The small crack is treated as continuous distributed generalized line dislocations. The
traction free and electrically impermeable conditions along the small crack surface will give a group of sin-
gular integral equations of the Cauchy type. The special numerical technique (Erdogan and Gupta, 1972;
Hills, 1995) is introduced to solve the singular integral equations with the single-valued conditions of the
displacements and electric potential. Then the generalized stress field on the edge of the elliptic hole and
the generalized stress intensity factors near the tips of cracks are obtained. Numerical results show that
the distributions of stress and electric displacement on the edge of the elliptic hole depend on the geometric
configuration, the loading, the location and orientation of the small crack. An elliptic hole near the crack
can strongly reduce the stress intensity factor of the crack and the direction of the electric field significantly
influences the shielding effect. In the case that the elliptic hole is degenerated into a crack, the small crack
has shielding or amplifying effect on the stress intensity factors of the main crack, which depends on the
location and direction of the small crack.

2. Basic equations and general solution
In a fixed rectangular coordinate system x; (i = 1,2, 3), all of the field variables depend on x;, x, only for
a generalized plane piezoelectric problem. Following Suo et al. (1992), Chung and Ting (1996) and Kuang

and Ma (2002), the general solution in this case can be given by the linear combination of four complex
analytical functions

u=2Re[Af(z)], ¢ =2Re[Bf(z)],
u= [Ml,uz7u3,(/7]Tv b= [¢17¢2a¢37¢4]T7

f(Z) = [fl(Zl)7f2(22)7.f3(z3)7f4(z4)]T7 Zk = X1+ P, k= 17273747 (1)



Z.-D. Zhou et al. | International Journal of Solids and Structures 42 (2005) 2803-2822 2805

where Re stands for the real part of a complex function; u;, ¢ and ¢, are the displacement components,
electric potential and generalized stress functions, respectively; A and B are 4 x 4 complex matrices related
to the material constants, expressed as

A =[a;,a3,a3,24), B =[b;, by, b3 byl (2)
The eigenvalues p, and eigenvectors a, are determined by the following equations

[Q+ (R+R")p+Tp’la=0, (3)
in which

E E E
R T
Q= QT €11 . R= i €21 C T= ! €22 7
€ K € K2 €n —K»
Qi = Cilkl, R,l-i = Cilk2, Tfi =cor, (&), = ey, 4)

where ¢, is the elastic stiffness under constant electric field, e, is the piezoelectric constant and x;; is the
permittivity under constant strain field. b, can be obtained as

be = (R" + pT)ay = — pi (Q + pR)a,. (5)

The generalized stress can be represented as
T T
0] = [011,012,0137D1] = _[¢l,25¢2,27¢3,2a¢4,2] ,
T T
o) = [021762256237D2] = [471,17 ¢2,1»¢3,17¢4ﬁ1} .

After the normalization for the eigenvectors A and B, the following relation can be obtained

37 S

0 I
where the overbar denotes the conjugate of a complex function. The piezoelectric Barnett—Lothe tensors
can be written as

S=i2AB" —1), H=i2AA", L= —-i2BB’, (8)

where S, H and L are real, H and L are symmetric, SH and LS are antisymmetric.

BT AT
B A'

A A
B B

A A
B B

BT AT
B A

3. Green’s function of an infinite piezoelectric plate with an elliptic hole

Consider an infinite plane piezoelectric medium containing an elliptic hole filled with air. The geometric
equation of an ellipse can be expressed as

x; =acosl, x,=bsinl, p(0) = Va2sin20 + b*cos?0,

R R
T |dsds 7| T T ds ' ds’

T )
0] . ds = p(0)do,

where 2a and 2b are the length of the major and minor axes of the ellipse, respectively, 6 is a real parameter,
n and m are the unit vectors tangential and normal to the elliptic boundary respectively, and s is an arc-
length on the ellipse, as shown in Fig. 1. It is noted here that m is pointed into the inner of the ellipse
as adopted by Chung and Ting (1996).
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Fig. 1. An elliptic hole and a small crack in an infinite piezoelectric medium.

The mapping function
zi(Sk) = s + dk@;:l, a = (a—ipb)/2, dy=(a+ipb)/2 (10)

will transform an ellipse in the z;-plane into a unit circle in the g.-plane. The inverse mapping function is

:zk+\/zi—4ckdk (11)

k
2Ck

Along the unit circle boundary I', there is

0

Gl =0 =¢€" =cos0+isin0. (12)

Let the generalized line dislocation b* and the generalized line force f* be applied at a point zy(x19, X20)
outside the ellipse, where b* = {b,b,} = {b1,b,,b3,b4}, b represents Burgers vector and b, is an electric di-
pole layer along the slip plane, and f* = {f,f,} = {f},/>./3.f4}, f represents a line distributed force vector and
f4 represents a line charge. Owing to the linear property, the principle of superposition can be used and this
problem can be divided into following two problems: (1) The generalized line dislocation b* and the gen-
eralized line force f* at the point zg(x;g,X20) In a homogeneous infinite piezoelectric medium. (2) The
boundary of the elliptic hole are subjected to the loadings which makes the mechanical traction free and
normal electric displacement and electric potential continuous on it with the infinite outer medium.

3.1. Infinite homogeneous piezoelectric medium subjected to b* and f* at a point

For the case that the generalized line dislocation b* and the generalized line force f* are applied at a
point zy(x19, X20) in @ homogeneous infinite piezoelectric medium (problem (1)), the generalized stress func-
tion and generalized displacement can be written as

u' = 2Re[Af'(2)], &' =2Re[Bf'(2)], (13a)
or

uy = 2Refaufi(z0)], &) = 2Relbuf (z)], (13b)

fi(z) = qgIn(z — zw0),  zo = X10 + P (13c)
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The equilibrium conditions of the force and the single-valued conditions of the generalized displacement are

jqu)‘ =, }{dul =b, (14a)

c c

where ¢ presents an arbitrary closed curve around the point zy,. Combining Eq. (13) with Eq. (14a), it is
found

4nRe[iBq] =f*, 4nRe[iAq] =Db". (14b)
With the aid of Eq. (7);, the following relation can be obtained

1 1
— AT + —B"p". 15
q=5_ AT +5 (15)
According to the principle of superposition cited above, it is needed for problem (2) to obtain the surface
traction along the elliptic boundary. In doing so, the generalized stress function along the elliptic boundary
is firstly solved as follows.
By using Egs. (12), (13) and (15) and the relation

Infze(s6) — zt0(Sk0)] = (& — g50) + In [ (1 _ )] (16)

SkSko

the generalized stress function due to the presence of the generalized line dislocation and the generalized
force at zy can be obtained as

o' = 1 Im{B<ln(gk — o) +1n | (1 - d"—/c") >(ATf* + BTb*)}. (17)
T L CkCko0 / |
Along the unit circle boundary, it follows
o ~LlimlB In(o — ¢4) +1n | o di/en (A"f* +B'b) ¢, (18)
T L 0Ck0 / |

in which (e)represents a diagonal matrix, Im stands for the imaginary part of a complex function, and

In(o — ) = In(—¢40) i;()l In(—c) — Zi(}) [cos(nB) + isin(nd)],

g : ko

In [ck<1 _ il c")] —lnc, — f: - (d"—/q> g Y ’11 (dk/ c") cos(n0) — isin(n0)].

497 — 297 ] 497

(19)

Applying Eq. (6), the generalized surface traction vector t,, at a point on the elliptic boundary in this case
can be obtained as

t, = (¢Ir)

L) () T
“ [(d’;—f?) (4 }W@}%rf* +Bn,*>}. (20)
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3.2. The general solution of an infinite piezoelectric medium with an elliptic hole

For problem (2), the generalized displacement and stress function vanishing at infinity in the piezoelec-
tric medium can be expressed as (Chung and Ting, 1996)

f'(z) = (,")(Ag, + B'h,),

NgE

u =23 Re[Al")A g, +2 ) Re[A(")Bh,,
n=1

n=1

Re[B(c;")A"]g, + 2 Re[B(c,")B']h,,

n=1

NgE

¢II:2

n

where g,.h, are real constant vectors, which will be determined later by the exact boundary conditions.
Substituting Eq. (12) into Eq. (21), the generalized displacement, generalized stress function and the gen-
eralized surface traction t, along the elliptic boundary can be expressed as

o]

u! =) [cos(nO)h, — sin(n0)h,],
L= i[cos(n@)gn —sin(n6)g,], (22)

b= (@), = —ﬁ nf;{n[sinme)gn T cos(n)g,]},

in which

h,=Sh,+Hg, g =S'g —Lh, n=12,... (23)

3.3. The electric field within the elliptic hole

On the other hand, the scalar electric potential ¢, inside the hole without free charge can be expressed as
(Gao and Fan, 1998; Zhou et al., 2004; Kuang and Ma, 2002)

2dfo(z)
dZ Y
in which F is the electric field fo(z) is an analytical function inside the hole. If in the local coordinate system

at a point on the elliptic boundary is selected such that n is coincided with x; and m is coincided with x,,
then it is easy known that the normal electric displacement component on the boundary of the hole is

D= — 280 Im[dfo(Z)] 7
= ds

¢o(z) =2Refy(2), —(E|—iE;) =—E =

(24)

ds = p(0)do, (25)

where ¢ is the permittivity of air.
Because the air is isotropic, the mapping function
2(co) = oGy +dog, ', o= (a+b)/2, dy=(a—b)/2, (26)
transforms the elliptic boundary into a unit circle boundary and transforms the real axis between
—Va? —b* and Va® — b* into the circle (p, = v/(a — b)/(a + b) < 1), respectively. Namely, the inside of

an elliptic hole is transformed into the inside of an annular ring between |go| = | and po < 1. Therefore,
in the annular ring, fo(z) can be expressed by Laurent’s expansion as
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foeo) = 3 at, (27)

where a’ is a complex constant. Because fy(z) is analytic inside the elliptic hole in the physical plane, the
following condition on the circle with radius pg in the mapping plane must be satisfied (Sosa and Khutor-
yansky, 1996; Kuang and Ma, 2002)

Jo(poe”) = folpee™). (28)
Following Eq. (28), fo(z) can be expressed as

o0

fo(zo) =D+ (do/co)"sy™). (29)

n=1

Substituting Egs. (12) and (29) into Eq. (25), we have

Dy = _/)2080 i { {—n(l + (ig) ") Imag] sin(n0) + {n(l — <i§>n> Reag] cos(n())}. (30)

n=1

3.4. Green’s function of the problem

To ensure the traction-free and electric displacement continuous conditions on the interface (boundary)
of the elliptic hole and its outer infinite piezoelectric plate for the original problem, the generalized surface
traction t,, must be applied to the elliptic boundary in problem (2), where

ty = —t, +Djrls, i =10,0,0,1]". (31)
Substituting Egs. (20), (22); and (30) into Eq. (31), the following relations can be obtained

g, =gl +g% g =gV +g?

g = Lim[B((L)" + (“) ) A"r + BT,

Sk0 Sk0

o) () e ]

SkO

gl? = —2¢(1 + (do/co)") Im[al]is, G2)
8 = 2e0(1 — (do/co)") Re[a]is,

in which g, and g, are all divided into two parts: the first part associates to the traction-free condition, and
the second part associates to the electric displacement continuous condition.

Finally, by making the superposition of Egs. (17) and (21);, and combining with Egs. (16) and (32), one
can obtain the generalized stress function inside piezoelectric medium as

d=0"+0¢"=0" +0?,

& =23 RelB(e")(ATg + B'h!)] + L im{Blnz.(s,) — zo0(u)) (AT + BTb)}.

0 =23 Re[B(;,")(ATg? + B"h?)],
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where ¢ and ¢'? represent the function associated with D—P boundary condition (the generalized traction
free) and that with the exact electric condition (the electric displacement continuous) caused by the general-
ized line dislocation and the generalized line force, respectively. Substituting Egs. (19), (23) and (32),4 into
Eq. (33), and using the relation

'Sy /n=—In(1 - ¢ '5h), if g5 I<1 (34)

one obtains

1 1 - _
& =~ Im[B{In(s, — ) (AT + BB+~ > ImiBlin(; " —50))B BLA'T + By (35)
J=1
In which
I, = diag[1,0,0,0], I, =diag[0,1,0,0], I5=diag[0,0,1,0], I, = diag[0,0,0, 1], (35b)

From Eqgs. (24) and (29), the electric potential ¢o on the hole surface can be expressed as
@or = 2Re[fo(a)] = 2Re Zag[(l + (do/co)") cos(nb) +i(1 — (do/co)") sin(n0)]. (36)
n=1

Comparing Eq. (22); with Eq. (36) and the single-valued condition, one obtains
(h,); = 2(1 + (do/co)") Relay],
(h,)y = 2(1 = (do/co)") Im[a)]; n > 1.
Substituting Egs. (32) and (37) into Eq. (23), the following relations can be obtained
2[(1 + (do/Co)n) + 80(1 — (do/co)")L;j]Re[ag] + 280(1 + (do/Co)n)LleS;l;Im[a?’] = Cl,,,
—2¢0(1 — (do/co)" )Ly, Sy Rela)] + 2[eo(1 + (do/co)") g + (1 = (do/co)")] Imla)] = Ca,

in which

Cio = {sim (et A - Relp(eg)aT
sl 4w o
o= im0 s
+5 {24087 + T Re B <%>BTJ o
where C,,, C», are reals. Solving Eq. (39), one gets

a2 = O(n/[)))n

1 — ,, . Lo
o, = E[Cn(dO/CO) (1 — 80L241 + ISOLZle};) — Cn(l + 80L241 + 180L4le};)],

B, = {(1 = (do/co)™)[1 = (eoLgi ) — (e0Ly)S}y)°] — 2e0(1 + (do/co)™)Lai },
C, = Ci, +1Cy,.

Employing Eq. (32) and Eq. (33)s, the generalized stress function ¢® can be expressed as

= 26 Z Im[B (@ — (do/co)"a’iy)), (41)
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where @’ is obtained from Eq. (40) and the following relations have been used
AT+ B'L'S"=B'/2, B'L!'=iB')2. (42)
Because the air is a special dielectric without mechanical strength, the above solution is much easier than
that with a general piezoelectric inclusion. It is also noted that if the elliptic hole is not a slender one, the
insulated condition on its boundary is approximately held, that is, ¢y = 0 inside the elliptic hole. In this case,
¢'® vanishes and the present solutions coincide with those by Lu and Williams (1998).
4. Piezoelectric plate with a main crack and a generalized line dislocation
In this section, let the elliptic hole degenerate into a crack along the x; axis, and a generalized line dis-

location b* at point zo(x19, X20) is applied only. Then c¢; = d;, = a/2 and ¢y = dy = a/2. The additional gen-
eralized stress function ¢ can be represented as

&% = —4a Y Im[B(c;")B ' (ilmaliy)]. (43)
Eq. (40) is simplified to
L, 1
ImC, = —Cy, = —2—2 Im [B<7>BTb*],
nm Sho (44)

:Bn = 7480LZ417 Im (,Zg = C2,1/480LZ41

Substituting Eq. (44) into Eq. (43), the generalized stress function ¢'? is reduced to

ii "By Cay) :fzzR { < ljk >B‘1i4], (45)

in which, we have

X Cyy x "Ly} 1
- § : - Ar—1 = § E 411 Tm {B<ﬂn >BT} 4
L44 nmly, Sl

n=1 1

> Lil 1 o 1
o3 (e n( L) o
o7 Ly, SkSio CrSho

-1

L4J' —1=-1
= 71 [Bj1<1n(1 =Sk so )>91 +le<1n(1 Sk Sio ))C] ]
44

Egs. (45) and (46) show that the generalized stress function ¢'? is independent of &,. It may be seen that
Eq. (46) has the same form as that (Eq. (48) in the reference) given in Gao and Fan (1998).

The generalized stress intensity factors dK(a) = {dKj;, dK;, dKy, dKp} at the center crack tip x; =a is
defined as

dK(a) = \/Z_nzhg}l V(2 — a)d, - (47)
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Substituting Egs. (33), (35) and (43) into Eq. (47), it is found

aKia) = im0

4
— ) m [B< ! >BT} -~ Im [B< L >B‘1BIJBT} b*
na 1 — G0 = 1 -3

(48)
G
— — B B'bi
T LZ41 1 - Sk0
L*_l
= \/L{Im [B<1 Sl a>BTb*] — Y Im [B<1 . /M>BTb*i4} }
na Zyy—a L, Zro — @
From Eq. (48), we can obtain

L, .

dKD(a) = —FdKj(a), J= 1,273. (49)

44

Eq. (49) means that the electric displacement intensity factor caused by generalized line dislocation b* in a
piezoelectric medium is dependent on the mechanical stress intensity factors and material properties.

Similarly, the generalized stress intensity factors at the center crack tip x; = —a are
1 Z — a Ly} Ziy — a
dK(—a) = —y/—< Im {B<1 — >BTb*] ——Z1Im [B<1 - —>BTb*i4} ,
na Zxo +a Ly, Z +a
L, ,
dKp(—a) = —FdK,-(—a), j=1,2,3. (50)

44

5. Continuous distribution dislocation method

Here, a small crack is represented by continuous distributed generalized line dislocations. Using the
Green’s functions obtained in Sections 3 and 4, a group of singular integral equations of the Cauchy type
are obtained, which can be solved by a special numerical technique (Erdogan and Gupta, 1972; Hills, 1995).

Let a small crack located near the end of an elliptic hole in plane piezoelectric medium be subjected to
uniform electro-mechanical loads at infinity, see Fig. 1. Owing to the linear property, the principle of super-
position can be used and the problem can be divided into two ones: (a) The plane piezoelectric medium with
an elliptic hole only is subjected to uniform electro-mechanical loads at infinity. (b) Same as the original
problem but without electro-mechanical loads at infinity and the small crack is instead by continuous dis-
tribution of dislocations. The dislocations will produce tractions on the small crack surface to counteract
those produced in problem(a).

For problem (a), the generalized stress function is (Gao and Fan, 1999; Kuang and Ma, 2002)

¢ = 6% — 6%, — Re{B(c;")B'[a(65° — D3is) — ib(67° — Diiu)]}, (51)
where the uniform loads at infinity can be represented as

T T
Gfo - [6(1)170(1)276(1)3’[)(1)] ’ Ggo = [02176(2)270237Dg} ) (52)
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and D7, D are the electric displacement inside the elliptic hole and are given by

(bL}) — a/ey)D} — aLy'S},D; = bL; 67 — aL4,1ST021, (53)
bLy'SiuD} + (aLy) —b/ey)D; = bL4zlS o +aly' o3
If the elliptic hole is degenerated into a center crack along the x; axis, let » = 0, then Eqgs. (51) and (53)
are reduced to

o = 6§°xl — 6°x; — Re[B(c;')B'a(65° — D3iy)],

54
D; 0-21 /L ( )

it can be seen that electric displacement D; only depends on external loads and piezoelectric material
properties.

For problem (b), by integrating the generalized stress function, given by Eqgs. (35) and (41), along the
small crack surface, one obtains

ROSE { m{Bln(s; — 510))B'] + > Im(B{in(s;’ —;,o>>B1E1jET]}b*<¢>d<

+ 2¢ Zlm "B @ — (do/co)"a}isdé, (55)

where 2c¢ is the length of the small crack and z;,z;y can be expressed as
zi = (XY + pxd) + n(cos o + p, sin ), (56)
zio = (x) + pxd) + E(cos o+ py sina),
where « is the angle between the small crack and the axis ox;, # and & denote the distances from the small

crack center (x9,x3 or d, ¥) to z;, zxo, respectively.
Using the superposition principle, the generalized stress function ¢ can be expressed as

b =69 + . (57)
Because the traction is free on the small crack surface, we have

od 6(1)(11) 6¢(b)

Os Os + Os » Isl<e (58)

Substituting Egs. (51) and (55) into Eq. (58), one obtains
1 c ) 1 c c
1 [mfmeno L aes [ Kicam @ [ Kaemas = -1y,
T = 65 cos 0 — 67 sin 0 + Re{B<a“‘/as>B [a(65° — Djis) — ib(67° — D;i4)]},
m 2

where T, denotes the generalized traction along the small crack induced by problem (a) and the kernel
functions of the singular integral equation, K; and K,, are

e ]

CkSro — 1 1 —¢hp

(60)
__zgozl {<"a’k/as>31{° (do/co)"a }]14
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It should be noted that in the derivation of Eq. (59), the following relations have been used

%f(z )= 33{1 %X; +§ch’2 % = cosﬂg'—;+pksin9§7fk = (cos@+pksin9)aj(;(zik),
de, )05 2¢3(cos 0 + p, sin 0) (61)
a(s; — 1)
When the elliptic hole is degenerated into a crack, the Kernel function K, can be written as
-1
Ky (&) = lIm{B<LL_f1 [3,,<M>B,Tm - Ej,<6gf7/as>§fm} b;;>Bl }i4. (62)
Ly k(Sk0— 1) k(xS — 1)

Let I’ = &/c, I = n/c, then Eq. (59) can be rewritten as

1 1 1 1 1
——/ Im (BB (/) ldl’+/ Kl(l/,z)b*(z’)d1/+/ Ko(I,0)dl = —To(1), |l]|<1.  (63)
-1 - -1 -1 -

T

The single-valued conditions of the generalized displacement around a closed contour surrounding the
whole small crack are

/1 b*(7)dl' = 0. (64)

Following Erdogan and Gupta (1972), since b* have an integrable singularity, we can define a regular un-
known function b as

b(1)
b (1) = (63)
Vi P
where b is Holder-continuous along [—1,1].

Now, the whole problem is reduced to a group of singular integral equations including Egs. (63)—(65). By
applying the numerical method introduced by Erdogan and Gupta (1972) and Hills (1995), the unknown
function b can be solved and then the dislocation density b* can be determined simply. Here, we select
the collocation points 7/, /, in the interval [—1,1] as
(2i—1)n T

, l.=cos—, i=12...,nand r=1,2,...,n—1, (66)

I = cos
! 2n n

then the singular integral equations are reduced to a set of algebraic equations as follows

T ~
Z b(l) {h;l Bl? |k, 1) - nKz(z;,I,)} =T(1,),

(67a)
ZB(I;):O
i=1
in which
5 1 L;?{ < D¢,/ Os > _< 9 /0s  \=1 1\
Ko (¢,n) = —Imd B{ =% |B,( — LK% _\pT _ B "">B}Bli, 67b
(&) T { <L441 s (S e VA s G(aS—1/" ! (670)

where b is a four rank vector. The first and second equations of Eq. (67a) will provide 4(n — 1) and 4 alge-
braic equations respectively, so Eq. (67a) has totally 4n equations with 4n unknown variables. The 4n X 4n
algebraic coefficient matrix on the left hand side of Eq. (67a) can be inversed.
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When the function b is obtained at the collocation points, its value at the two crack tip can be given by
(Hills, 1995)

—

ZbE 1)b(Z), b(-1 ZbE (Li1—)s

(68)
B B sm[(21 - 1)(2n — 1)n/4n]
The generalized stress vector near the small crack tips can be expressed as
-0 ,
T,(l) = iBB sgn(/) +Tm(l), | 1]>1, (69)

- VI -1
where T’ (/) is finite near the crack-tips, and sign(/)=//|/|. When / approaches to 1 (or —1), the values of b at
the tips can be obtained as

b(+1) = lim b(/)=— lim b(J), (70)
| ==l
where I~ means / approaches to +1 from the outside of the interval [—1,1]and /" means / approaches to +1
from the inside of the interval [—1,1]. Using Egs. (69) and (70), we can calculate the generalized stress inten-
sity factors at the tips of small crack as follows

Ky
K7 ~
K;: = lim /2n(dx — ¢)FT,(x) = lim /2n(&/ — 1)cFT, (1) = —iy/7cFBBT b(+1)sgn(£1),
il e B - a
K%
(71)
F is the transformation matrix given as
—sinf cosf 0 0
cosf sinf 0 O
= (72)

0 0 10
0 0 0 1

If the elliptic hole is degenerated into a main crack, the generalized stress intensity factors near the tips of
the main crack can be written as two parts, that is

Ky
K —
"L =K'+ K, (73)
K
Kp
where the first part is associated with the uniform loading at infinity, it is
K’ = /ra(ey — Diiy), (74)

and the second part, called as the additive generalized stress intensity factors, is produced due to the small
crack. Integrating Eq. (48) along the small crack surface, we have

/dK / Hb (I dl' = ZPI’ 1) (75)
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where P is a bounded complicate function in the interval [—1, 1] and is not given here in order to keep this
work in a reasonable size.

6. Numerical results and discussions

The numerical examples are carried out for PZT-4 material with the poling direction along the ox, axis.
The material properties are

e =139 x 10" (N/m?), ¢3=7.78 x 10" (N/m?), ¢, = 7.43 x 10" (N/m?),
e = 11.3x 10" (N/m?), ¢4y = 2.56 x 10" (N/m?),
ey = —6.98(C/m?), ey = 13.84(C/m?), es = 13.44(C/m?),

g1 = 6.00 x 107°(C/Vm), &, =547 x 107 (C/Vm).
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Fig. 2. The distribution of the normalized mechanical intensity factor with  for a small crack and a center main crack (o« =0,d/c =
alc =2). (a) At the right tip of main crack. (b) At the left tip of main crack. (c) At the right tip of small crack (x = ¢). (d) At the left tip
of small crack (x = —c¢).



Z.-D. Zhou et al. | International Journal of Solids and Structures 42 (2005) 2803-2822 2817

Let the center of a small crack be z°(x{,x9) or (d,) and it inclines an angle o with respect to the axis oxy,
as shown in Fig. 1.

To check the validity of the present method, infinite elastic plate with two same parallel cracks along ox;
(dla=1.5,a = ¢, = = 0) subjected to Mode I mechanical load o9 at infinity are considered. The results
show that the stress intensity factors at the tips of two cracks are Ki(a) = 1.22894/7ac9, Ki(—a) =
1.08107/macy and Ky(a +d+ ¢) =1.08108 \/mac), Ki(a+d — ¢) = 1.22889+/mas), which are consistent
to the results of Han and Chen (1999).

6.1. Interaction between the main crack and a small crack

The second example is to consider the interaction between a small crack and a center main crack with
D-P boundary condition and under Mode I electro-mechanical loads at infinity. Both the small crack and
the main crack are parallel, that is o = 0. For comparing, four kinds of loads (K% /K =0,5x 107,
10°%,-107®) and d/c¢ = a/c =2 are considered.

Fig. 2 shows the variation of the normalized stress intensity factors K;/K{ and KJ'/K} (K} = \/mas9)
with the angle 1, respectively. At the right tip of the main crack, the stress intensity factor will be amplified
or shielded dependent on the value of . The transition angle from amplifying to shielding depends on the
electric load. It is found that in the range of 0-90°, the electric load has no influence on the stress intensity
factor at three values . At the left tip of the main crack, the stress intensity factor will always be amplified
in the range 0-90° and it is also found that there are two values of s at which the electric load has no influ-
ence on the stress intensity factor. From Fig. 2, it can also be seen that the normalized stress intensity fac-
tors at four tips of small crack and main crack depend on the electric load and the angle . Especially, in
some region, negative electric field has a negative influence on the stress intensity factors. The results ob-
tained here are somewhat similar to the results of Fig. 3 in Zeng and Rajapakse’s work (2000) for a semi-
infinite crack.

Fig. 3 shows the variation of normalized stress intensity factor of main crack with a radial small crack(d/
¢=1.2, a=2c and o =) where the exact electric boundary condition on the boundary of the ellipse is
satisfied. As seen from this figure, there are three special y values, at which electric field has no influence
on the stress intensity factor, including 0° (a parallel small crack) or 90° (a perpendicular small crack) and
the third value of  (about 38° or 48°) depends on the material properties and the location of the crack. In
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Fig. 3. The distribution of the normalized stress intensity factor near the main crack-tips with y for the radial small crack (Y = a,
dfc =1.2). (a) At the right main crack-tip. (b) At the left main crack-tip.
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Fig. 4. The distribution of normalized stress intensity factors with Y (« = 0,d/c = afc = 2). (a) At the right tip of small crack (x = ¢).
(b) At the right tip of small crack (x = ¢). (c) At the right tip of small crack (x = ¢). (d) At the left tip of small crack (x = —c). (e) At the
left tip of small crack (x = —c). (f) At the left tip of small crack (x = —c).
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the region of ¥ = 0°, « < 90°, the stress intensity factors at the main crack-tips are always amplified. The
negative and positive electric fields will have a contrary effect on the stress intensity factors of the main
crack.

6.2. Interactions between the elliptic hole and a small crack

Consider a small crack located near the elliptic hole in a piezoelectric plate subjected to uniform electro-
mechanical loads ¢) and D) at infinity. If the ratio b/a is not very small, the D-P boundary condition is
reasonable.

Fig. 4 depicts the distribution of the normalized stress intensity factors K7'/K7° (K7 = \/mca9) at the
end of the small crack with the various angles i in a piezoelectric plate subjected to various electro-mechan-
ical loads. As shown in the figure, K" of the small crack depends on the ratio b/a, the angle y and the elec-
tro-mechanical loads. But in all cases, K}' /K < 1, which means that an elliptic hole near by the crack can
reduce the stress intensity factor of a crack and the shielding effect is happened. It can also be seen that the
shielding effect for D, = —1.0 x 107%¢9 is larger than that for D, = +1.0 x 1049, This means that the
direction of the electric field strongly influences the shielding effect. The larger b/a the smaller shielding ef-
fect on the stress intensity factors of small crack is, but the effect of b/a on K}' is very small, when b/a < 0.01
and d =a = 2c.

Fig. 5 depicts the variation of the normalized stress a,/09 at the point (a,0) on the elliptic boundary with
the angle . The normalized stress at the right point (a, 0) may be either increased or decreased due to the
presence of the small crack. The transition angle is dependent on the electric load and the ratio a/b. Similar
to Figs. 2(a) and (b), the electric load has no influence on the stress at three special values of i, but in pres-
ent case the special iy does not take zero value. As shown in Fig. 5, the positive and negative electric loads
have the contrary influence on the stress at the point (a, 0).

Fig. 6 shows the distribution of normalized hoop stress /a5 and electric displacement Dy/a9 on the
edge of a circle hole (¢ = b = 1) for various radial small crack( y = a, b/c = a/c = 2). As shown in Figs.
6(d)—(f), the maximum values of the hoop stress do not always occur at 0 = 0 (the polar angle with origin
at circle center) and depend on the orientation of radial small crack and electric load. For example, when
the mechanical load o9 is applied only, the maximum values of ¢y occur at 0 = 15°, 0 = 0°, 0 = 23° asso-
ciated with = 0°, Y =45°, y =90°, respectively. Similarly, the maximum value of the hoop electric
displacement depends on the orientation of radial small crack and electro-mechanical loads.
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Fig. 5. The normalized stress at the point (a,0) with i the small crack (« = 0,d/c = a/c =?2). (a) bla=1 (b) bla=0.1.
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Fig. 6. The distribution of normalized stress and electric displacement on the edge of a circle hole (¥ = a,d/c = a/c = 2). (a) D = 0. (b)
D) = 1.0E — 8a). (c) D) = —1.0E — 8"69. (d) D = 0. (e) D} = 1.0E — 8*4. (f) DS = 1.0E — 8"09.



Z.-D. Zhou et al. | International Journal of Solids and Structures 42 (2005) 2803-2822 2821
7. Conclusions

This paper gives the Green’s function for an infinite piezoelectric medium with an elliptic hole filled with
air or without air under the generalized line dislocation and the generalized line force. Based on the Green’s
functions, the interaction of an arbitrary distributed small crack and an elliptic hole in plane piezoelectric
medium subjected to uniform electro-mechanical loads at infinity are discussed. Through solving the singu-
lar integral equations, the generalized stress intensity factors of main and small cracks with D-P boundary
condition or exact electric boundary condition in main crack and the generalized stress on the edge of an
elliptic hole are obtained under combined electro-mechanical loads. Numerical illustrations and discussions
for the interaction are given. An elliptic hole near by a crack always reduces the stress intensity factors of
the crack and the direction of the electric field is important in discussing the shielding effect. The amplifying
and shielding to the generalized stress intensity factors of a main crack due to the presence of a small crack
are dependent on the location and orientation of a small crack, which is similar with the results in litera-
tures. There are some special locations, at which the electric field has no influence on the stress intensity
factor, including 0° (a parallel small crack) and 90° (a perpendicular small crack). The stress and the electric
displacement on the edge of an elliptic hole are not always largest at the point (a, 0) when a small crack
exists.
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